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than others. We seek to construct forecasts that are “robust” to set identification of

parameters of the forecasting model. We characterize forecasts that minimize maxi-

mum risk or maximum regret as model parameters vary over the identified set. The

optimal forecasts under either robustness criterion depends in a natural way on two

extremum problems which can be solved, at least in large part, by duality arguments,

making computation of the robust forecasts computationally light. Extensions to model

misspecification and structural breaks are also discussed.
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1 Introduction

Suppose that a subset of parameters of a forecasting model are only set-identified. Should

the lack of point identification be a concern for the forecaster? At first glance the answer

appears to be “no.” If the parameters in the identified set generate different forecasts and

some of these forecasts are less accurate than others, then we should be able to discriminate

among the parameters based on the observed data. To the extent that we are unable to do,

the parameterizations should be observationally equivalent and therefore generate the same

forecasts. This intuition is confirmed in the context of vector autoregressions (VARs): while

the structural form of the VAR may only be set-identified, forecasts only utilize the reduced

form of the VAR which is directly identifiable from the observed time series. This intuition

is also confirmed in the context of dynamic linear factor models. The parameters are only

identified up to a particular normalization of the latent factors, but each normalization leads

to identical forecasts.

In this paper, we consider the problem of forecasting with set-identified panel dynamic

discrete choice models and show that the VAR intuition does not apply. As is well known

(Honoré and Tamer, 2006; Chamberlain, 2010; Chernozhukov, Fernández-Val, Hahn, and

Newey, 2013), the homogeneous parameters and the correlated random effects distribution

are set-identified when no parametric assumptions are made about the random effects dis-

tribution. Our paper makes several contributions. First, we demonstrate that in the panel

dynamic discrete choice setting different parameters in the identified set lead to different

forecasts, some more accurate than others.

Second, we construct forecasts that are “robust” to set identification of parameters of

the forecasting model. By robust, we mean forecasts that minimize either maximum risk or

maximum regret (i.e. risk relative to the infeasible Bayes decision if the true model parameter

was known) as model parameters vary over the identified set. We show that for binary loss,

quadratic loss, and a log-scoring rule, the optimal forecasts under either robustness criterion

depends on two extremum problems which characterize the smallest and largest conditional

probabilities for the discrete outcomes being forecasted as the model parameters vary over

the identified set. These extremum problems can be solved, at least in large part, by duality

arguments, making computation of the robust forecasts computationally light.

Third, we show how our approach can be extended to deal with potential structural breaks

between the in-sample and forecasting period and misspecification of various aspects of the

forecasting model, including the distribution of error terms. This problem is not restricted
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to models in short panels. Structural breaks and model misspecifications are concerns for

any forecast model.1

Our paper is related to several strands of the literature. For forecasting short time-

series using panel data see, e.g., Baltagi (2008), Gu and Koenker (2016), Liu, Moon, and

Schorfheide (2018b), Liu (2019), and Liu, Moon, and Schorfheide (2018a). Applications of

partial identification in nonlinear panel data analysis include Honoré and Tamer (2006) who

show that homogeneous parameters in dynamic discrete choice models are set-identified from

short panels when the random coefficient distribution isn’t specified parametrically. They

also propose simple computational methods based on linear programming. Chernozhukov

et al. (2013) characterize the identified set of the average treatment effects in semiparametric

nonlinear panel models and study inference.

There is an extensive literature on statistical decision theory following Wald (1950). Most

closely related to our approach are the notions of Γ-minimax (or Γ-minimax regret) decisions

in robust Bayes analysis, in which “robust” decision rules minimize the maximum posterior

risk (or regret) over a set of priors (Robbins, 1951; Berger, 1985). In economics, this approach

is also related to the multiple priors framework of Gilboa and Schmeidler (1989) and the

robustness literature following Hansen and Sargent (2001).

In short panels, a posterior distribution over model parameters will be supported asymp-

totically on the identified set provided the identified set is contained in the support of the

prior. The data does not revise the prior over the identified set. Thus, the posterior-predictive

distribution for the discrete variable being forecast conditional on the sample may be affected

by the forecaster’s prior, even asymptotically. In this respect, our robust forecasts may be

viewed as asymptotically Γ-minimax (or Γ-minimax regret) forecasts when the set of priors

over which the econometrician is seeking robustness is sufficiently rich that it accommodates

any posterior supported on the identified set.

Other related econometric applications of minimax decision rules in econometrics include

Chamberlain (2000) who applied the idea of minimax decision making to forecasting with

a linear dynamic panel data model and Chamberlain (2001) for forecasting with a time-

homogeneous AR(1) model. For related robust Bayesian approaches to inference under

partial identification, see Kitagawa (2012) and Giacomini and Kitagawa (2018).

The remainder of this paper is organized as follows. Section 2 introduces the robust

forecasting problem in a panel dynamic discrete choice model under the assumption of no

1See Clements and Hendry (1998) for a taxonomy of forecast errors.
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sampling uncertainty. Section 3 provides a numerical illustration of robustifying forecasts

against partial identification. Section 4 considers extensions to model misspecification and

structural breaks. In Section 5 we account for sampling uncertainty. Finally, Section 6

concludes.

2 A Panel Dynamic Discrete Choice Model

Let I{y ≥ a} be the indicator function that is one if y ≥ a and zero otherwise. Throughout

this section we shall consider the following basic dynamic discrete choice model:

Yit+1 = I
{
λi + βYit ≥ Uit+1

}
, P{Uit+1 ≤ u|Y t

i = yt, λi = λ} = Φt+1(u), (1)

where Y t
i = (Yi1, ..., Yit)

′ and yt is a realized value of Y t
i . The econometrician observes Y T

i =

(Yi1, ..., YiT )′ for i = 1, . . . , N and wishes to forecast YiT+1. We treat the initial condition Yi0

as unobserved and specify a joint distribution between Yi0 and the heterogeneous intercept λi.

We denote the joint and marginal distributions of (λi, Yi0) by Πλ,y, and Πλ, Πy, respectively.

The corresponding densities are denoted by π•. The cumulative density function (cdf) of Uit

is potentially time-varying. We collect the sequence of cdfs in the set Φ⊗T =
[
Φ1, . . . ,ΦT

]
.

To forecast YiT+1 we also require a cdf ΦT+1. Models are indexed by θ =
(
ΦT+1,Φ

⊗
T ,Πλ,y, β

)
.

Note that unless one assumes that ΦT+1 = Φt for some t < T +1 the sample does not contain

any identifying information about ΦT+1. The model (1) can be used to generate point and

density forecasts of the form ŶiT+1 ∈ {0, 1} and p̂iT+1 ∈ [0, 1], respectively.

In what follows, we shall abstract from sampling uncertainty and focus on the case with

N −→ ∞ to illustrate the role of partial identification. Forecasting rules will be rules that

condition on the observed vector Y T
i , rather than the full sample, as the forecaster knows

the identified set Θ0.

2.1 Loss Functions and Bayes Forecasts

We adopt a decision-theoretic approach to analyzing our forecasting problem. We denote

the forecast for YiT+1 by d(Y T
i ), which takes values in a decision space D and is based on an

observed vector Y T
i . Let θ = (ΦT+1,Φ

⊗
T , β,Πλ|y). In this section we derive the forecast that

minimizes the posterior risk (expected loss), treating θ as known and λi as unknown. Having

observed Y T
i , the forecaster forms a posterior predictive distribution over YiT+1, with Πλ|y
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treated as a conditional prior for λi. The forecast d(Y T
i ) is then obtained by minimizing the

posterior risk. We relax the assumption of known θ in Section 2.2 and allow θ to be set-

identified. Minimax risk and regret arguments will be used to cope with the non-uniqueness

of θ. Throughout this paper, we consider binary and quadratic loss functions and the log

predictive probability score to evaluate the forecast accuracy.

Binary Loss. The binary loss function for the decision space D = {0, 1} takes the form

`b
(
YiT+1, d(Y T

i )
)

= a10I{YiT+1 = 1, d(Y T
i ) = 0}+ a01I{YiT+1 = 0, d(Y T

i ) = 1} . (2)

It is straightforward to verify that the optimal point forecast in this environment is

d∗b,θ(Y
T
i ) = I

{
Pθ{YiT+1 = 1|Y T

i } ≥
a01

a01 + a10

}
. (3)

The optimal binary forecast is not unique for values of Y T
i such that Pθ{YiT+1 = 1|Y T

i } =
a01

a01+a10
. All optimal binary forecasts differ only in their handling of ties. Each optimal binary

forecast has risk

a10 · Pθ{YiT+1 = 1|Y T
i } ∧ a01 · (1− Pθ{YiT+1 = 1|Y T

i }) , (4)

where a ∧ b denotes the minimum of a and b.

Quadratic Loss. Now consider the quadratic loss function

`q
(
YiT+1, d(Y T

i )
)

=
(
YiT+1 − d(Y T

i )
)2 ≤ 1. (5)

The point forecast with decision space D = [0, 1] that minimizes posterior risk and integrated

risk is the posterior mean

d∗q,θ(Y
T
i ) = Eθ[YiT+1|Y T

i ] = Pθ{YiT+1 = 1|Y T
i } . (6)

Log Predictive Probability Score. The loss function for the decision space D = [0, 1]

takes the form

`p
(
YiT+1, d(Y T

i )
)

= I{YiT+1 = 1} log

(
Pθ{YiT+1 = 1|Y T

i }
d(Y T

i )

)
+ I{YiT+1 = 0} log

(
Pθ{YiT+1 = 0|Y T

i }
1− d(Y T

i )

)
, (7)
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with the understanding that `p
(
YiT+1, d(Y T

i )
)

= +∞ if Pθ{YiT+1 = 1|Y T
i } > 0 and d(Y T

i ) =

0, or if Pθ{YiT+1 = 0|Y T
i } > 0 and d(Y T

i ) = 1.

Under the log-scoring rule, the conditional risk Eθ
[
`p
(
YiT+1, d(Y T

i )
)
|Y T
i

]
is the Kullback–

Leibler divergence between the conditional distribution of YiT+1 given Y T
i and a Bernoulli

distribution with success probability d(Y T
i ):

Pθ{YiT+1 = 1|Y T
i } log

(
Pθ{YiT+1 = 1|Y T

i }
d(Y T

i )

)
+ Pθ{YiT+1 = 0|Y T

i } log

(
Pθ{YiT+1 = 0|Y T

i }
1− d(Y T

i )

)
.

It follows that the optimal point forecast in this environment is

d∗p,θ(Y
T
i ) = Pθ{YiT+1 = 1|Y T

i } . (8)

The optimal point forecasts under quadratic loss and the log-scoring rule are the same

but their risks are different. The risk under the log-scoring rule is zero, whereas the risk

under quadratic loss is Pθ{YiT+1 = 1|Y T
i }(1− Pθ{YiT+1 = 1|Y T

i }).

2.2 Robust Forecasts

We now consider forecasts that are robust with respect to the parameterization of the forecast

model. Suppose that the goal is to robustify the forecast over the subset Θ0 ⊂ Θ. We take

Θ0 to be the set of parameters that can be identified at time T based on the observable choice

probabilities. We consider two notions of forecast robustness, namely minimizing maximum

risk (minimax) and minimizing maximum regret (minimax regret), where the regret of a

forecast is its risk in excess of the (infeasible) Bayes forecast if the true θ were known.

As we shall see, both the minimax forecasts and minimax regret forecasts will depend on

the lower and upper values of the forecast probabilities Pθ{YiT+1 = 1|Y T
i } as θ varies over

the identified set Θ0:

pL(Y T
i ) := min

θ∈Θ0

Pθ{YiT+1 = 1|Y T
i } , and (9)

pU(Y T
i ) := max

θ∈Θ0

Pθ{YiT+1 = 1|Y T
i } . (10)

The challenge in implementing the robust forecasts is to solve these extremum problems.

Section 3.2 below shows how computation of these terms may be simplified using duality

techniques, making implementation computationally light.
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2.2.1 Minimax Forecasts

Binary Loss. We first derive the binary forecast that achieves the conditional minimax

risk:

min
d(Y Ti )∈{0,1}

max
θ∈Θ0

Eθ
[
`b(YiT+1, d(Y T

i ))
∣∣Y T
i

]
, (11)

where `b denotes the binary loss function (2) and the decision space is D = {0, 1}. If the

forecaster chooses d(Y T
i ) = 1, then her adversary solves the following problem:

max
θ∈Θ0

Eθ
[
`b(YiT+1, 1)

∣∣Y T
i

]
= a01 − a01 · min

θ∈Θ0

Pθ{YiT+1 = 1|Y T
i } = a01(1− pL(Y T

i )).

If the forecaster chooses d(Y T
i ) = 0, then

max
θ∈Θ0

Eθ
[
`b(YiT+1, 0)

∣∣Y T
i

]
= a10 ·max

θ∈Θ0

Pθ{YiT+1 = 1|Y T
i } = a10pU(Y T

i ).

Thus, we can deduce that a minimax-optimal forecast is given by

db,mm(Y T
i ) = I

{
a01 ≤ a01pL(Y T

i ) + a10pU(Y T
i )
}

(12)

and the minimax conditional risk is

R∗b,mm(Y T
i ) =

(
a01 − a01pL(Y T

i )}
)
∧
(
a10pU(Y T

i )
)
. (13)

Like the point-identified case, the minimax-optimal binary forecast is not necessarily unique.

Non-uniqueness arises for values of Y T
i such that

a01 = a01pL(Y T
i ) + a10pU(Y T

i ) .

If so, each minimax-optimal forecast differs only in its handling of ties. Each minimax-

optimal forecast has the same maximum conditional risk.

Quadratic Loss. We now derive the forecast that achieves the conditional minimax risk:

min
d(Y Ti )∈[0,1]

max
θ∈Θ0

Eθ
[
`q(YiT+1, d(Y T

i ))
∣∣Y T
i

]
, (14)

where `q denotes the quadratic loss function (5) and the decision space is D = [0, 1]. Note

Eθ
[
`q(YiT+1, d)

∣∣Y T
i

]
= Pθ{YiT+1 = 1|Y T

i }(1− 2d) + d2 .
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Therefore, if the forecaster chooses d ∈ [0, 1], her maximum risk is

max
θ∈Θ0

Eθ
[
`q(YiT+1, d)

∣∣Y T
i

]
=


pU(Y T

i )(1− 2d) + d2 if d < 1
2
,

pL(Y T
i )(1− 2d) + d2 if d > 1

2
,

1
4

if d = 1
2
.

It follows that the minimax-optimal forecast under quadratic loss is given by

dq,mm(Y T
i ) =


pU(Y T

i ) if pU(Y T
i ) ≤ 1

2
,

pL(Y T
i ) if pL(Y T

i ) ≥ 1
2
,

1
2

otherwise

(15)

and the minimax conditional risk is

R∗q,mm(Y T
i ) =


pU(Y T

i )(1− pU(Y T
i )) if pU(Y T

i ) ≤ 1
2
,

pL(Y T
i )(1− pL(Y T

i )) if pL(Y T
i ) ≥ 1

2
,

1
4

otherwise .

(16)

Log Predictive Probability Score. We now derive the forecast that achieves the condi-

tional minimax risk:

min
d(Y Ti )∈[0,1]

max
θ∈Θ0

Eθ
[
`p(YiT+1, d(Y T

i ))
∣∣Y T
i

]
, (17)

where `p denotes the loss function (7) corresponding to the log-scoring rule and the decision

space is D = [0, 1].

We first rule out a few pathological cases. First, suppose the forecaster chooses d = 0. If

pU(Y T
i ) > 0 then the adversary can set the forecaster’s maximum risk to +∞ by choosing

any θ with Pθ{YiT+1 = 1|Y T
i } > 0. Thus, it is only optimal for the forecaster to choose

d = 0 if pL(Y T
i ) = pU(Y T

i ) = 0, in which case the model is point identified and d = 0 is

also the Bayes decision. Similarly, it is only optimal for the forecaster to choose d = 1 if

pL(Y T
i ) = pU(Y T

i ) = 1.

Now suppose that pL(Y T
i ) < pU(Y T

i ). Here the forecaster will choose some d ∈ (0, 1). By

convexity of Kullback–Leibler divergence, the maximum risk of the forecast must be obtained
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at either pL(Y T
i ) or pU(Y T

i ):

max
θ∈Θ0

Eθ
[
`p(YiT+1, d)

∣∣Y T
i

]
=

(
pL(Y T

i ) log

(
pL(Y T

i )

d

)
+ (1− pL(Y T

i )) log

(
1− pL(Y T

i )

1− d

))
∨
(
pU(Y T

i ) log

(
pU(Y T

i )

d

)
+ (1− pU(Y T

i )) log

(
1− pU(Y T

i )

1− d

))
.

By convexity, the maximum risk is minimized by choosing d to equate the two terms. The

minimax-optimal forecast under the log-scoring rule is therefore

dp,mm(Y T
i ) =

exp
(
f(pL(Y T

i ), pU(Y T
i ))
)

1 + exp (f(pL(Y T
i ), pU(Y T

i )))
,

where

f(pL(Y T
i ), pU(Y T

i )) =
h(pL(Y T

i ))− h(pU(Y T
i ))

pL(Y T
i )− pU(Y T

i )
,

and h(p) = p log p + (1 − p) log(1 − p). The probability dp(Y
T
i ) minimizes the maximum

Kullback–Leibler divergence between the conditional distribution of YiT+1 given Y T
i and the

forecast distribution as θ varies over Θ0.

2.2.2 Minimax Regret Forecasts

The minimax regret criterion measures maximum risk relative to the infeasible first-best

Bayes forecast which the forecaster would make if she knew the true value of θ.

Binary Loss. We first derive the binary forecast that minimizes the conditional maximum

regret under binary loss:

min
d(Y Ti )∈{0,1}

max
θ∈Θ0

(
Eθ
[
`b(YiT+1, d(Y T

i ))
∣∣Y T
i

]
− Eθ

[
`b(YiT+1, d

∗
b,θ(Y

T
i ))
∣∣Y T
i

])
, (18)

where d∗b,θ is the Bayes forecast from (3), the loss function `b is the binary loss function (2),

and the decision space is D = {0, 1}.

If the forecaster chooses d(Y T
i ) = 1, then her adversary solves the problem (cf. (4)):

max
θ∈Θ0

(
Eθ
[
`b(YiT+1, 1)

∣∣Y T
i

]
− a10 · Pθ{YiT+1 = 1|Y T

i } ∧ a01 · (1− Pθ{YiT+1 = 1|Y T
i })

)
=
(
a01 − (a01 + a10)pL(Y T

i )
)
∨ 0 ,
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where a ∨ b denotes the maximum of a and b. If the forecaster chooses d(Y T
i ) = 0, then

max
θ∈Θ0

(
Eθ
[
`b(YiT+1, 0)

∣∣Y T
i

]
− a10 · Pθ{YiT+1 = 1|Y T

i } ∧ a01 · (1− Pθ{YiT+1 = 1|Y T
i })

)
=
(
(a01 + a10)pU(Y T

i )− a01

)
∨ 0 .

Thus, we can deduce that a minimax regret-optimal binary forecast is given by

db,mmr(Y
T
i ) = I

{((
a01

a01 + a10

− pL(Y T
i )

)
∨ 0

)
≤
((

pU(Y T
i )− a01

a01 + a10

)
∨ 0

)}
(19)

and the minimax regret is

R∗b,mmr(Y T
i ) =

((
a01 − (a01 + a10)pL(Y T

i )
)
∨ 0
)
∧
((

(a01 + a10)pU(Y T
i )− a01

)
∨ 0
)
.

As with the other binary forecasts, the minimax regret-optimal forecast is not necessarily

unique. Non-uniqueness arises for values of Y T
i such that(

a01

a01 + a10

− pL(Y T
i )

)
∨ 0 =

(
pU(Y T

i )− a01

a01 + a10

)
∨ 0 .

If so, each minimax regret-optimal forecast differs only in its handling of ties. Each minimax

regret-optimal forecast has the same maximum regret.

Quadratic Loss. We now derive the forecast that minimizes the conditional maximum

regret under quadratic loss:

min
d(Y Ti )∈[0,1]

max
θ∈Θ0

(
Eθ
[
`q(YiT+1, d(Y T

i ))
∣∣Y T
i

]
− Eθ

[
`q(YiT+1, d

∗
q,θ(Y

T
i ))
∣∣Y T
i

])
, (20)

where d∗q,θ is the Bayes forecast from (6), the loss function `q is the binary loss function (5),

and the decision space is D = [0, 1]. In fact, it is without loss of generality to restrict the

decision space to the interval [pL(Y T
i ), pU(Y T

i )]. Note

Eθ
[
`q(YiT+1, d)

∣∣Y T
i

]
− Eθ

[
`q(YiT+1, d

∗
q,θ(Y

T
i ))
∣∣Y T
i

]
= Pθ{YiT+1 = 1|Y T

i }
(
Pθ{YiT+1 = 1|Y T

i } − 2d
)

+ d2

=
(
Pθ{YiT+1 = 1|Y T

i } − d
)2
.
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Therefore, if the forecaster chooses d ∈ [pL(Y T
i ), pU(Y T

i )], her maximum regret is2

max
θ∈Θ0

Eθ
[
`q(YiT+1, d)

∣∣Y T
i

]
=

[
(pU(Y T

i )− d)2 if pU(Y T
i )− d ≥ d− pL(Y T

i ) ,

(pL(Y T
i )− d)2 if pU(Y T

i )− d ≤ d− pL(Y T
i ) .

The minimax regret-optimal forecast is therefore

dq,mmr(Y
T
i ) =

pL(Y T
i ) + pU(Y T

i )

2

and the minimax regret is

R∗q,mmr(Y T
i ) =

(
pU(Y T

i )− pL(Y T
i )

2

)2

.

Log Predictive Probability Score. The risk of the Bayes forecast d∗p,θ from (8) is zero.

Therefore, under this loss the risk of any forecast is equal to its regret. The minimax-optimal

and minimax regret-optimal forecasts are therefore identical: dp,mm(Y T
i ) = dp,mmr(Y

T
i ).

2.2.3 Equivalence of Robust Binary Forecasts under Symmetric Loss

The minimax regret-optimal and minimax-optimal binary forecasts are identical under sym-

metric loss (i.e. a01 = a10). To see this, first suppose pL(Y T
i ) > 1

2
. In this case, the Bayes

decision is d∗b,θ(Y
T
i ) = 1 for all θ ∈ Θ0 and so db,mmr(Y

T
i ) = db,mm(Y T

i ) = 1. Similarly, when

PU(Y T
i ) < 1

2
the Bayes decision is d∗b,θ(Y

T
i ) for all θ ∈ Θ0 and so db,mmr(Y

T
i ) = db,mm(Y T

i ) = 0.

It remains to consider the case in which the inequalities

pL(Y T
i ) ≤ 1

2
, pU(Y T

i ) ≥ 1

2

2 Without loss of generality, suppose that d ∈ [0, pL(Y Ti )). Then,

max
θ∈Θ0

(
Pθ{YiT+1 = 1|Y Ti } − d

)2
=
(
pU (Y Ti )− d

)2
≥

(
pU (Y Ti )− pL(Y Ti )

)2 ≥ min
d∈[pL(Y T

i ),pU (Y T
i )]

max
θ∈Θ0

(
Pθ{YiT+1 = 1|Y Ti } − d

)2
.
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both hold. This is the case in which the Bayes decision will be different for different θ ∈ Θ0.

Here it is straightforward to deduce that

db,mmr(Y
T
i ) = I

{
1
2
− pL(Y T

i ) ≤ pU(Y T
i )− 1

2

}
= I

{
1 ≤ pL(Y T

i ) + pU(Y T
i )
}

= db,mm(Y T
i ) .

The minimax regret-optimal and minimax-optimal binary forecasts may be different under

asymmetric loss (i.e. a01 6= a10), however.

3 Robustness to Partial Identification

We shall illustrate the relation between the different forecasts (minimax, minimax regret,

and Bayes) using a numerical example from Honoré and Tamer (2006). The model is a panel

probit model: Φt is the standard normal cdf for all t. The distribution Πλ,y is unspecified,

but λ is assumed to be supported on the discrete evenly-spaced grid {−3,−2.8, . . . , 2.8, 3}.
Under the true data-generating process, λ and y0 are independent with Πy0(Y0i = 1) = 1

2

and the probability mass for λ under Πλ is assigned by interpolating a N(0, 1) distribution

on the support points.

3.1 Forecast Comparisons in a Numerical Illustration

We are interested in comparing the minimax-optimal binary forecast, the minimax regret-

optimal binary forecast, and the (infeasible but first-best) binary Bayes forecast. To im-

plement the robust forecasts, the extremum problems are solved using the linear program-

ming techniques described below in Section 3.2. We also consider a naive forecast assuming

Markovianity. The naive probability is computed by calculating P (YiT = 1|YiT−1) from the

observed data, and then iterating forward one period assuming it is the transition distribu-

tion: PN(Yi,T+1 = 1|YiT = yiT ) = P (YiT = 1|YiT−1 = yiT ). The naive forecast is the Bayes

decision under the naive probability:

dN(Y T
i ) = I

{
PN(Yi,T+1 = 1|YiT ) ≥ a01

a01 + a10

}
.

Figure 1 illustrates how in dynamic discrete choice forecasting problems when model

parameters are only set-identified, different parameters in the identified set may lead to

different forecasts, some of which are more accurate than others. Each plot is based on a



This Version: May 30, 2019 12

(yi,1, yi,2) = (0, 1)

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

y=(01)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(yi,1, yi,2) = (1, 0)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

y=(10)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: QQ plot of the risk of the naive forecast dN (yellow line) and minimax
forecast dmm (blue line) for Yi3 having observed (yi,1, yi,2) = (0, 1) against the infea-
sible Bayes forecast d∗b,θ for draws from the identified set Θ0. The orange line is the
45 degree line and represents the risk associated with d∗b,θ.
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large number of draws from the identified set for (β,Πλ,y) when T = 2 and the true value of

β is 0.2. The draws for (β,Πλ,y) are obtained by first drawing uniformly from the identified

set for β, then drawing from the identified set for Πλ,y given β. To do so, we first draw a

vector of probabilities, say p̃, uniformly from the simplex in R62 (the number of points of

support of the discretized prior). We then use exponential tilting to compute the probability

distribution closest to p̃ that solves the moment conditions at the draw β̃. The resulting

distribution Π̃λ,y and β̃ are in the identified set for (β,Πλ,y). Thus, each draw explains the

data up to date T .

Consider the problem of forecasting Yi3 under symmetric loss, having observed (yi1, yi2) =

(0, 1) or (1, 0) (the Bayes, minimax, and naive forecasts are identical when we observe

(yi1, yi2) = (0, 0) or (1, 1)). For each draw, say θ, from the identified set Θ0 we compute

the Bayes forecast d∗θ,b. This is an infeasible first-best, as it requires knowledge of θ. We

calculate the risk of this forecast under Pθ and compare it with the risk of two feasible fore-

casts, namely the minimax forecast (which is also the minimax-regret forecast as the loss

function is symmetric) and the naive forecast assuming Markovianity. Figure 1 depicts QQ

plots of the risk of the two feasible forecasts relative to the Bayes forecast. In both panels,

the 45 degree line (in orange) corresponds to the infeasible Bayes decision, the blue line is

the minimax forecast and the yellow line is the naive forecast. The black vertical line denotes

the Bayes risk at the true parameter.

We see that the risk of the forecasts are different for different draws θ ∈ Θ0 because

distribution of future observations under Pθ is different. The minimax and Bayes forecasts

are the same for some of the draws from the identified set (the proportion for which the

blue line runs along the 45 degree line). The blue line then departs from the orange line for

draws where the minimax and Bayes forecasts are different and, consequently, have different

posterior risks.

We shall now study how the properties of the forecasts vary as we vary the true β. Note

that in varying β we vary the moments observed in the data and, as a consequence, we vary

the identified set Θ0. For each true value of β, we calculate the maximum risk and maximum

regret over Θ0 for each forecast as a function of conditioning variables yT .

Figures 2 displays the maximum risk and maximum regret for the four forecasts under

symmetric loss for T = 2. As predicted, the minimax-optimal and minimax-regret optimal

forecasts are identical and minimize both maximum risk and maximum regret. The next

best-performing forecast under both criteria is the infeasible Bayes forecast, followed by the
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naive forecast. The results are quite different depending on the conditioning information

and true value of β, however.

Figure 3 presents corresponding plots repeating the exercise under asymmetric loss with

a01 = 2, a10 = 1. Here the minimax-optimal and minimax-regret optimal forecasts can

differ quite substantially, and their behavior under one optimality criterion can be quite

different under the other. From top panel we see that the minimax regret-optimal forecast

is the worst-performing forecast in terms of maximum risk for certain values of yT and β0.

On the other hand, the bottom panel shows that the minimax-optimal forecast can be the

worst-performing forecast in terms of maximum regret for certain values of yT and β0. The

ordering with respect to the other forecasts is preserved, however: the minimax-optimal

forecast dominates the Bayes forecast in terms of maximum risk which, in turn, dominates

the naive forecast. Similarly, the the minimax regret-optimal forecast dominates the Bayes

forecast in terms of maximum regret which, in turn, dominates the naive forecast.

3.2 Computing Extreme Probabilities

The challenge in implementing the minimax-optimal and minimax regret-optimal forecasts

is to solve the extremum problems:

pL(Y T
i ) := min

θ∈Θ0

Pθ{YiT+1 = 1|Y T
i } and pU(Y T

i ) := max
θ∈Θ0

Pθ{YiT+1 = 1|Y T
i } .

In the examples we study, θ may be partitioned as θ = (φ, ν) where φ is a low-dimensional

parameter and ν is a probability measure. The probability Pθ{YiT+1 = 1|Y T
i } and the

restrictions defining Θ0 are linear functionals of ν. Therefore, the problem of minimizing

and maximizing Pθ{YiT+1 = 1|Y T
i } over Θ0 can be split into an inner optimization over the

high-dimensional parameter ν and an outer optimization over the low-dimensional parameter

φ. We shall use duality techniques to simplify computation of the inner optimization over

the high-dimensional component.

To fix ideas, suppose Φt = Φ, a known cdf, for all t, but we do not wish to specify the

distribution Πλ,y. The parameter space reduces to Θ = {(β,Πλ,y)}. The identified set is

Θ0 = {θ = (β,Πλ,y) ∈ Θ : p(yT |β,Πλ,y) = p(yT ) ∀ yT} ,

where p(yT ) is the actual probability of Y T
i = yT that the econometrician observes in the
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Figure 2: Maximum risk and regret over Θ0 as a function of β0 for T = 2 under
symmetric loss. Results are plotted by (yi,1, yi,2). Dot-dashed blue lines are the
minimax forecast, solid purple lines are the minimax regret forecast, solid orange
lines are the Bayes forecast, and dotted yellow lines are the naive forecast.
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Figure 3: Maximum risk and regret over Θ0 as a function of β0 for T = 2 under
asymmetric loss (a01 = 2, a10 = 1). Results are plotted by (yi,1, yi,2). Dot-dashed
blue lines are the minimax forecast, solid purple lines are the minimax regret forecast,
solid orange lines are the Bayes forecast, and dotted yellow lines are the naive
forecast.
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data, and p(yT |β,Πλ,y) is the model-implied probability of observing Y T
i = yT :

p(yT |β,Πλ,y) =

∫
p(yT |y0, λ; β) dΠλ,y(λ, y0) ,

with

p(yT |y0, λ; β) =
T∏
t=1

Φ(βyt−1 + λ)yt(1− Φ(βyt−1 + λ))1−yt . (21)

Because p(yT |β,Πλ,y) = p(yT ) for any θ ∈ Θ0, the forecast probability is

Pθ{YiT+1 = 1|Y T
i = yT} (22)

=

∫
Φ(βyT + λ)

(∏T
t=1 Φ(βyt−1 + λ)yt(1− Φ(βyt−1 + λ))1−yt

)
dΠλ,y(λ, y0)

p(yT )
.

We may write the forecast probability more abstractly with x = (λ, y0) and ν = Πλ,y as∫
m(x, β) dν(x) ,

where

m((λ, y0), β) =
Φ(βyT + λ)

(∏T
t=1 Φ(βyt−1 + λ)yt(1− Φ(βyt−1 + λ))1−yt

)
p(yT )

.

The K = 2T constraints defining Θ0 can be stacked in a vector of moment conditions:∫
g(x, β) dν(x) = r ,

where we identify each element k = 1, . . . , K with a unique sequence yTk ∈ {0, 1}T and let

gk((λ, y0), β) = p(yTk |y0, λ; β) .

The expression for p(yTk |y0, λ; β) is given in (21), and rk = p(yTk ).

In the remainder we will focus on the maximization of Pθ{YiT+1 = 1|Y T
i } and defer the

solution to the corresponding minimization problem to the end of this section. For now we

will also assume that Πλ,y has finite support, say x1, . . . , xL. Thus, in turn the distribution

Πλ,y can be characterized by a vector π ∈ RL and the solution can be computed using linear

programming, similar to Honoré and Tamer (2006).



This Version: May 30, 2019 18

Define the L× 1 vector m(β) = [m(x1, β), . . . ,m(xL, β)]′ and let ml(β) = m(xl, β). The

predictive probability and the vector of moment conditions may be written as

m(β)′π , and G(β)π = r , (23)

respectively, where the lth column of K × L matrix G(β) is Gl(β) = g(xl, β). Using this

notation, we show in Appendix A.1 that one can rewrite

max
θ∈Θ0

Pθ{YiT+1 = 1|Y T
i } = max

β

(
max

Πλ,y :(β,Πλ,y)∈Θ0

∫
m(x, β) dΠλ,y(x)

)
(24)

= max
β

(
inf
µ

max
l

(
ml(β) + µ′(r −Gl(β))

))
,

where µ is a K × 1 vector of Lagrange multipliers for the vector of moment conditions. The

inner program in the second line of the right-hand side involves optimizing piecewise-linear

functions and may therefore be computed efficiently by linear programming:

inf
µ

max
l

(ml(β) + µ′(r −Gl(β))) = min
v
f ′v subject to A(β)v ≥ −m(β) , (25)

where

v ∈ RK+1, f ′ = [01×K , 1] A(β) = [G′(β)− (ιL×1 ⊗ r′) , −ιL×1] .

Here ι denotes a vector of ones and ⊗ is the Kronecker product. The above linear program

delivers the value of the inner optimization over Πλ,y for fixed β. The program returns no

solution when β is not feasible, i.e., when there does not exist a probability measure Πλ,y

that satisfies the moment conditions at β. In this case, we set the value of the program to

−∞.

The extreme probabilities may therefore be efficiently computed by embedding the linear

program in an outer optimization with respect to the scalar parameter β:

max
θ∈Θ0

Pθ{YiT+1 = 1|Y T
i } = max

β

(
min
v
f ′v subject to A(β)v ≥ −m(β)

)
, (26)

with the understanding that the inner optimization problems take the value −∞, when

the linear program returns no solution. The minimization of Pθ{YiT+1 = 1|Y T
i } can be

implemented by replacing the inf and max operations in (24) with sup and min operations,

respectively, and the minimization and ≤ in (25) and (26) by a maximization and a ≥,

respectively. This is how the numerical results in Section 3.1 were generated.
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We discuss in Appendix A.2 how the analysis can be extended to non-discrete correlated

random effects distributions Πλ,y. The generalized version of the dual representation in (24)

for the inner optimzation over Πλ,y takes the form:

max
Πλ,y :(β,Πλ,y)∈Θ0

∫
m(x, β) dΠλ,y(x) = inf

µ
sup
x

(m(x, β) + µ′(r − g(x, β))) , (27)

where, as in the discrete case, µ is a vector of multipliers of dimensionK = 2T . Unfortunately,

a convenient representation as a linear programming problem is not available.

4 Robustness to Breaks and Misspecification

In the previous section, we generated the parameter subspace Θ0 with respect to which we

robustified the forecasts through a partial-identification argument. We now will consider two

alternatives: structural breaks and misspecification. While both structural breaks and model

misspecification are relevant concerns for any forecasting model, the subsequent exposition

continues to use the dynamic discrete choice model as the running example.

Structural breaks in the distribution of the Uit and misspecification of the random effects

distribution can both be handled by allowing the distribution under consideration to vary

over set of distributions. The set of distributions will give rise to a set of model parameters

Θ0 over which we seek to robustify the forecast. The extremum problems characterizing the

lower and upper forecast probabilities as θ varies over Θ0 may be solved in a computation-

ally tractable manner using convex duality when the set of distributions is constrained via

statistical divergence. In the exposition below, we shall follow the robustness literature in

economics and focus on Kullback–Leibler divergence neighborhoods. In practical terms, this

means that the linear program used to characterize the lower and upper forecast probabilities

in Section 3.2 is replaced by a convex program involving an exponential tilt.

4.1 Structural Breaks

In the dynamic discrete choice model (1) three types of breaks can, in principle, occur at

the forecast origin T : a break in the distribution of the Uits, a break in the λis, and a break

in β. To fix ideas, suppose that the researcher allows for Φt = Φ, a known cdf, for dates

t = 1, . . . , T , but wishes to allow for the possibility that ΦT+1 6= Φ. Formally, the researcher

might like to allow for ΦT+1 ∈ N , a neighborhood of Φ. Even when the homogeneous
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parameters β and random effects distribution Π is known at date T , there are still a set of

posterior distributions for YiT+1 corresponding to different ΦT+1 ∈ N .

To map into the earlier setup, we would parameterize the model by θ = (β,Πλ,y,ΦT+1).

The identified set (assuming point-identification of (β,Πλ,y)) would be Θ0 = (β,Πλ,y) ×N .

Consider the maximum forecast probability as θ varies over Θ0:

max
θ∈Θ0

Pθ{YiT+1 = 1|Y T
i } = max

ΦT+1∈N

∫ (∫
m̃(x, u, β) dΠλ,y(x)

)
dΦT+1(u) ,

where

m̃((λ, y0), u, β) =
I
{
λ+ βyT ≥ u

}(∏T
t=1 Φ(βyt−1 + λ)yt(1− Φ(βyt−1 + λ))1−yt

)
p(yT )

.

The extremum problem is one of maximizing a linear functional of ΦT+1 subject to the

constraint that ΦT+1 ∈ N . When

N =
{

ΦT+1 : K(ΦT+1‖Φ) ≤ δ
}
,

the maximization problem has a dual representation in terms of optimization over a single

scalar parameter η, which is the Lagrange multiplier on the constraint Φ ∈ N :

max
θ∈Θ0

Pθ{YiT+1 = 1|Y T
i } = inf

η>0
η log

(∫
eη
−1m̌(u,β) dΦ(u)

)
+ ηδ ,

where m̌(u, β) =
∫
m̃(x, u, β) dΠλ,y(x). Similar duality results underlie the robustness liter-

ature in economics (see, e.g, Hansen and Sargent (2007) and references therein), generalized

empirical likelihood estimation via exponential tilting (Kitamura and Stutzer, 1997), and la-

tent variable methods in econometrics (Schennach, 2014; Christensen and Connault, 2019).

The lower value minθ∈Θ0 Pθ{YiT+1 = 1|Y T
i } is computed analogously, replacing the infη>0

with supη<0.

Breaks in λi can be viewed as a location shift of the distribution Φt and are therefore

subsumed under breaks in the distribution of Uit. Breaks in β do not require the use of the

Kullback-Leibler divergence. They can be constrained by defining N as the set

N =
{
βT+1 : |βT+1 − β| ≤ δ

}
.

Conditional on YiT the probability Pθ{YiT+1 = 1|Y T
i } = ΦT+1(λi + βT+1YiT ) is a monotone
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function in βT+1, which means that the extremum is attained either at β − δ or β + δ.

4.2 Misspecification

Suppose the forecaster used a parametric correlated random effect model, Πλ,y = Π(λ, y0; ξ)

for ξ ∈ Ξ, a set of auxiliary parameters. The forecaster is worried that this parametric

specification might be misspecified. Therefore, for each ξ ∈ Ξ she allows for the possibility

that Πλ,y ∈ N(ξ), a neighborhood of Π(λ, y; ξ). TA natural specification of N(ξ) is to view

the researcher’s parametric correlated random effect model to be approximately correct, in

the sense that there is some Π(λ, y0; ξ) close to the true distribution Πλ,y. We follow the

same approach as in Section 4.1 and constrain N(ξ) to be a Kullback–Leibler neighborhood

of Π(λ, y; ξ). That is, N(ξ) = {Π : K(Π‖Π( · ; ξ) ≤ δ} for each ξ ∈ Ξ. We assume the absence

of a structural break: Φt = Φ for all t. The parameter space is therefore Θ = {(β, ξ,Πλ,y) :

Πλ,y ∈ N(ξ)}. The set Θ0 is given by

Θ0 = {θ = (β, ξ,Πλ,y) ∈ Θ : p(yT |β,Πλ,y) = p(yT ) ∀ yT and Πλ,y ∈ N(ξ)} ,

where the model-implied probabilities p(yT |β,Πλ,y) are as before.

Duality techniques may be used to simplify computation of the lower and upper forecast

probabilities as θ varies over Θ0. Consider the maximum forecast probability

max
θ∈Θ0

Pθ{YiT+1 = 1|Y T
i } = max

β,ξ

(
max

Πλ,y∈N(ξ):(β,ξ,Πλ,y)∈Θ0

∫
m(x, β) dΠλ,y(x)

)
,

where the inner maximum is −∞ if it runs over an empty set. Under a mild constraint

qualification condition, the inner extremum problem admits a dual representation in terms

of a scalar Lagrange multiplier η on the constraint Πλ,y ∈ N(ξ) and a 2T vector of multipliers

µ on the constraint
∫
g(x, β) dν(x) = r:

max
θ∈Θ0

Pθ{YiT+1 = 1|Y T
i } = max

β,ξ

(
inf
η>0,µ

η log

(∫
eη
−1(m(x,β)+µ′(r−g(x,β))) dΠ(x; ξ)

)
+ ηδ

)
,

see Christensen and Connault (2019) for a formal statement and related regularity conditions.

They also study convergence of the above value as δ →∞ to the maximum over the identified

set without parametric restrictions on Πλ,y.

The lower probability is computed similarly, replacing the maxβ,ξ with minβ,ξ and the

infη>0,µ with supη<0,µ.
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5 Forecasts Based on Plug-in Estimators

So far we have abstracted from sampling uncertainty, treating the data-moments p(yT ) and

extreme probabilities as known to the econometrician. In practice, the data moments p(yT )

may be estimated by their empirical counterparts p̂(yT ) for each yT ∈ {0, 1}T . The estimators

p̂(yT ) may be plugged-in in place of p(yT ) in the linear programs from the previous section.

In the context of the illustration in Section 2.2, the vector r in (23) needs to be replaced by

the vector r̂ with elements r̂k = p̂(Y T
k ) and the optimization problems in (24) and (25) need

to be changed accordingly. This will lead to estimates p̂L(yT ) and p̂U(yT ) of the lower and

upper extreme probabilities pL(yT ) defined in (9) and pU(yT ) defined in (10).

For fixed T and N −→ ∞, the estimator p̂ of the reduced-form choice probabilities is

consistent under a large variety of low-level regularity conditions. Based on this, the consis-

tency of p̂U and p̂L is generally straightforward to establish. Suppose the econometrician has

symmetric loss, so her minimax-optimal and minimax regret-optimal forecasts will agree.

Without loss of generality, normalize a01 = a10 = 1. A natural empirical counterpart to the

minimax binary forecast (12) is the plug-in forecast for YiT+1 having observed Y T
i = yT is

d̂mm = I
{

1 ≤ p̂L(yT ) + p̂U(yT )
}
. (28)

Conditioning on the data, the maximum risk of d̂mm(yT ) in excess of the maximum risk

of dmm(yT ) is zero if pL(yT ) + pU(yT )− 1 and p̂L(yT ) + p̂U(yT )− 1 both have the same sign.

Otherwise, the excess maximum risk is

ER(d̂mm(yT )) =

[
1− pL(yT )− pU(yT ) if pL(yT ) + pU(yT ) < 1, p̂L(yT ) + p̂U(yT ) ≥ 1 ,

pL(yT ) + pU(yT )− 1 if pL(yT ) + pU(yT ) ≥ 1, p̂L(yT ) + p̂U(yT ) < 1 .

(29)

This calculation reveals a tradeoff between the excess risk of the plug-in decision and the

precision of the plug-in estimators p̂U and p̂L. When |1−pL(yT )−pU(yT )| is large the excess

risk of the plug-in forecast is (possibly) larger, but pU and pL do not need to be estimated as

precisely to control the excess risk. Conversely, when |1−pL(yT )−pU(yT )| is small the excess

risk of the plug-in forecast is smaller but pU and pL need to be estimated more precisely to

control the excess risk.
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6 Conclusion

Panel data sets generate many challenges for forecasters. In this paper we focused on the

set-identification of parameters and correlated random effects distributions in panel dynamic

discrete choice models. We showed that different parameterizations that lie in the identified

sets can lead to different forecasts that ex post are associated with different forecast errors.

We proposed use of robust forecasts that are obtained by solving a minimax risk or regret

problem. These methods have wide applicability beyond panel discrete choice models, in

enviroments in which a forecaster is concerned about structural breaks or model misspecifi-

cation.
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Online Appendix: Robust Forecasting under Partial
Identification and Misspecification

Timothy Christensen, Hyungsik Roger Moon, and Frank Schorfheide

A Duality Results

A.1 Finite-Dimensional Case

Suppose that π ∈ RL is a discrete probability measure on a finite support {x1, . . . , xL}. That

is, π ≥ 0 and 1′π = 1. Also, suppose that all moment conditions are equality conditions.

The constrained optimization problem of Section 3.2 becomes

max
π

m′π subject to Gπ − r = 0, ι′π − 1 = 0, π ≥ 0.

The Lagrangian problem is

max
π

min
µ,ζ

min
κ≥0
L(π, µ, ζ, κ).

Here µ, ζ, and κ are the Lagrange multipliers on the three constraints and

L(π, µ, ζ, κ) = m′π + µ′ (Gπ − r) + ζ (ι′π − 1) + κ′π

= (m+G′µ+ ζι+ κ)
′
π − (µ′r + ζ)

Then, by duality we have

max
π

min
µ,ζ

min
κ≥0
L(π, µ, ζ, κ) = min

µ,ζ
min
κ≥0

max
π
L(π, µ, ζ, κ).

Now consider the problem

min
κ≥0

max
π

m∗(κ;µ, ζ)′π where m∗(κ;µ, ζ) = m+G′µ+ ζι+ κ.

Conditional on κ, the maximization with respect to π is solved by assigning probability one

to the largest element of the vector m∗(κ;µ, ζ). Conditional on this optimal choice for π,

the optimal choice of κ is κ = 0. Therefore,

min
κ≥0

max
π

m∗(κ;µ, ζ)′π = max
l∈{1,...,L}

ml + µ′Gl + ζ,
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where ml is the lth element of m and Gl is the lth column of the K × L matrix G.

Combining the intermediate results, we obtain (24) in the main text:

max
π

min
µ,ζ

min
κ≥0
L(π, µ, ζ, κ) = min

µ,ζ

(
max

l∈{1,...,L}
ml + µ′Gl

)
+ ζ − (µ′r + ζ)

= min
µ

(
max

l∈{1,...,L}
ml + µ′(Gl − r)

)
.

The dual problem may be implemented as a linear program:

min
v
f ′v subject to Av ≥ −m

where v ∈ RK+1, f ′ = [01×K , 1] and A = [G′ − (ιL×1 ⊗ r′),−ιL×1]. To see the equivalence,

write the Lagrangian problem for the linear program, using the L × 1 vector of Lagrange

multipliers ξ:

min
v1:K

(
min
νK+1

max
φl≥0

vK+1 +
L∑
l=1

φl
(
ml + v′1:K(Gl − r)− vK+1

))
.

Note that whenever ml+v
′
1:K(Gl−r)−vK+1 > 0, the inner maximization is solved by setting

φl = +∞. Thus, vK+1 has to be chosen such that ml + v′1:K(Gl − r) − vK+1 ≤ 0. If the

inequality holds strictly, then the optimal choice for φl is φ∗l = 0. In turn, the optimal choice

for vK+1 is

v∗K+1 = max
l∈{1,...,L}

ml + v′1:K(Gl − r).

Therefore, we can deduce that

min
v1:K

(
min
νK+1

max
φl≥0

vK+1 +
L∑
l=1

φl
(
ml + v′1:K(Gl − r)− vK+1

))

= min
v1:K

(
max

l∈{1,...,L}
ml + v′1:K(Gl − r)

)
,

which establishes that the linear programs solves the original problem.

A.2 Infinite-Dimensional Case

We now turn to the case in which x has continuous support X. We shall optimize with respect

to probability measures that have a density with respect to a common σ-finite dominating
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measure on (X,X ), where X denotes the Borel σ-field on X. In the example in Section 3.2,

we could let the random effects have continuous support Λ ⊆ R, take X = Λ × {0, 1}, and

set ν as the product of Lebesgue measure on Λ and counting measure on {0, 1}.

Formally, we consider the program

sup
π∈P

∫
m(x)π(x) dν(x) subject to

∫
g(x)π(x) dν(x) = r

where m : X → R is a bounded function, g : X → RK are moment conditions and r ∈ RK

are the value in the population. The supremum is taken over the set P of all densities on

(X,X ) that admit densities π with respect to ν and for which the integral
∫
g(x)π(x) dν(x) is

finite. We apply the results of Csiszár and Matúš (2012) who allow the maximum to be taken

over all densities π for which the integral
∫
g(x)π(x) dν(x) is finite, thereby accommodating

a very large class of constraint functions g. For instance, g does not have to be bounded.

Appendix B of Christensen and Connault (2019) extends results from Csiszár and Matúš

(2012) to setting with moment inequality constraints.

The solution in the discrete-support case may be expressed as

min
µ

(
max
x1,...,xL

m(xl) + µ′(g(xl)− r)
)
.

Intuitively, we might expect we could let the support points become dense in X and replace

the inner maximum over x1, . . . , xL with a sup over x. This intuition is correct, subject to

some measure-theoretic considerations. Formally, the dual program is

inf
µ:supx(m(x)+µ′(g(x)−r))<+∞

(
sup
x
m(x) + µ′(g(x)− r)

)
,

where the inf on the right-hand side is to be understood as the ν-essential infimum (i.e.

the “almost-everywhere” version of infimum used in measure-theoretic settings). When g

consists entirely of bounded functions the outer infimum may be replaced with infµ. The

constraint qualification condition guaranteeing equivalence of the primal and dual is

r ∈ ri

({∫
g(x)π(x) dν(x) :

∣∣∣∣∫ g(x)π(x) dν(x)

∣∣∣∣ <∞}) ,

where ri denotes relative interior.
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